Cheilitis glandularis (CG) is an uncommon condition of unknown origin; it is clinically characterized by variable degrees of macrocheilia associated with red dilated ostia of minor salivary glands on the vermilion area, which secrete viscous saliva. Histopathological characteristics of CG are comprised of chronic sialadenitis with engorged acinar lobules and dilated ducts; CG also features chronic sun damage (actinic cheilitis and squamous cell carcinoma). These changes may be localized, and a punch biopsy specimen might fail to reveal enough criteria to support the diagnosis of CG. Reflectance confocal microscopy (RCM) is a noninvasive imaging technique that enables an in vivo en face visualization of tissues with a resolution close to conventional histopathology. Its use allows analysis of the entire lip, without excision. We reported the evaluation of 5 cases of CG based on clinical RCM and histopathological correlation. RCM examination of the lip vermilion mainly revealed a bright aspect of the superficial epithelial layers, which corresponded to labial keratosis. Alteration of the classical epithelial honeycomb pattern was observed in RCM, which corresponded to epithelial changes in actinic cheilitis at histopathology. Round, dark empty spaces intermingling the epithelium, corresponded to the ectopic excretory salivary gland ducts that open their ostia within the lip vermilion. In the lamina propria, the most striking feature was superficial salivary gland lobules, seen as dark gray lobular structures. Our study, demonstrated the use of RCM in the evaluation of CG, showing that a correlation between the clinical, digital RCM images and histopathology improved the diagnostic skills in CG evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/DAD.0000000000000210 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFCureus
December 2024
Cornea and Refractive Surgery, Al-Shifa Trust Eye Hospital, Rawalpindi, PAK.
Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.
View Article and Find Full Text PDFJAAD Case Rep
February 2025
Department of Dermatology, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China.
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFPharmaceutics
January 2025
MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany.
: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!