A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime. | LitMetric

Liquid flow in microchannels is completely laminar and uniaxial, with a very low Reynolds number regime and long mixing lengths. To increase fluid mixing and solubility of reactants, as well as to reduce reaction time, complex three-dimensional networks inducing chaotic advection have to be designed. Alternatively, turbulence in the liquid can be generated by active mixing methods (magnetic, acoustic waves, etc.) or adding small quantities of elastic materials to the working liquid. Here, polyelectrolyte multilayer capsules embodying a catalytic polyoxometalate complex have been suspended in an aqueous solution and used to create elastic turbulence and to propel fluids inside microchannels as an alternative to viscoelastic polymers. The overall effect is enhanced and controlled by feeding the polyoxometalate-modified capsules with hydrogen peroxide, H2O2, thus triggering an on-demand propulsion due to oxygen evolution resulting from H2O2 decomposition. The quantification of the process is done by analysing some structural parameters of motion such as speed, pressure, viscosity, and Reynolds and Weissenberg numbers, directly obtained from the capillary dynamics of the aqueous mixtures with different concentrations of H2O2. The increases in fluid speed as well as the capsule-induced turbulence effects are proportional to the H2O2 added and therefore dependent on the kinetics of H2O2 dismutation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4lc00791cDOI Listing

Publication Analysis

Top Keywords

elastic turbulence
8
h2o2
5
catalytic oxygen
4
oxygen production
4
production mediated
4
mediated smart
4
smart capsules
4
capsules modulate
4
modulate elastic
4
turbulence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!