Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3.

Phys Rev Lett

Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: September 2014

Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortexlike objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to the magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice are achieved that span a range of ∼25°. Supporting calculations show that an E-field-induced Skyrmion distortion lies behind the lattice rotation. Overall, we present a new approach to Skyrmion control that makes no use of spin-transfer torques due to currents of either electrons or magnons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.107203DOI Listing

Publication Analysis

Top Keywords

skyrmion distortion
8
lattice rotation
8
skyrmion lattice
8
electric-field-induced skyrmion
4
distortion giant
4
lattice
4
giant lattice
4
rotation magnetoelectric
4
magnetoelectric insulator
4
insulator cu2oseo3
4

Similar Publications

Investigating skyrmion stability and core polarity reversal in NdMnGe.

Sci Rep

January 2025

Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

Skyrmions, a stable topological vectorial textures characteristic with skyrmionic number, hold promise for advanced applications in information storage and transmission. While the dynamic motion control of skyrmions has been realized with various techniques in magnetics and optics, the manipulation of acoustic skyrmion has not been done. Here, the propagation and control of acoustic skyrmion along a chain of metastructures are shown.

View Article and Find Full Text PDF

Magnetic skyrmions are quasi-particles with a swirling spin texture that form two-dimensional lattices. Skyrmion lattices can exhibit defects in response to geometric constraints, variations of temperature or applied magnetic fields. Measuring deformations in skyrmion lattices is important to understand the interplay between the lattice structure and external influences.

View Article and Find Full Text PDF

In the early 2000s, low dimensional ferroelectric systems were predicted to have topologically nontrivial polar structures, such as vortices or skyrmions, depending on mechanical or electrical boundary conditions. A few variants of these structures have been experimentally observed in thin film model systems, where they are engineered by balancing electrostatic charge and elastic distortion energies. However, the measurement and classification of topological textures for general ferroelectric nanostructures have remained elusive, as it requires mapping the local polarization at the atomic scale in three dimensions.

View Article and Find Full Text PDF

Particle-based model of liquid crystal skyrmion dynamics.

Soft Matter

February 2024

Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

Motivated by recent experimental results that reveal rich collective dynamics of thousands-to-millions of active liquid crystal skyrmions, we have developed a coarse-grained, particle-based model of the dynamics of skyrmions in a dilute regime. The basic physical mechanism of skyrmion motion is related to squirming undulations of domains with high director twist within the skyrmion cores when the electric field is turned on and off. The motion is not related to mass flow and is caused only by the reorientation dynamics of the director field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!