The effect of humic acid on the toxicity and bioavailability of trivalent chromium.

Ecotoxicol Environ Saf

Toxicology Program, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe 71209-0470.

Published: February 1989

The influence of humic acid (HA) on the toxicity and bioavailability of two forms of trivalent chromium (chromic chloride and chrome lignosulfonate) was evaluated using a common freshwater invertebrate, Daphnia pulex. With both compounds, the 50 mg/liter HA significantly decreased toxicity at all time points examined. The remaining two HA concentrations, 0.5 and 5 mg/liter, either had no influence or decreased the toxicity of the compounds. Humic acid appeared to have no influence on the bioavailability of chrome lignosulfonate. However, for chromic chloride, 5 and 50 mg/liter HA decreased the percentage free chromium at all time points examined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0147-6513(89)90014-6DOI Listing

Publication Analysis

Top Keywords

humic acid
12
acid toxicity
8
toxicity bioavailability
8
trivalent chromium
8
chromic chloride
8
chrome lignosulfonate
8
mg/liter decreased
8
decreased toxicity
8
time points
8
points examined
8

Similar Publications

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Analyze the impact of lignin depolymerization process and its products on humic substance formation.

Int J Biol Macromol

January 2025

College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China. Electronic address:

This study aimed to identify types of lignin depolymerization products (LDP) and their role in humic substances (HS) formation, and little research has revealed which LDP could participate into HS formation during composting. Therefore, rice straw (RS), peanut straw (PS) and pine needles (PN) were selected for their different lignin structures to qualitatively and quantitative analyze LDP firstly. Qualitative results indicated that RS, PS and PN mainly produced LDP with G-type, common group and dimer structure.

View Article and Find Full Text PDF

Overlooked risks of photoaging of nitrogenous microplastics with natural organic matter in water: Augmenting the formation of nitrogenous disinfection by-products.

Water Res

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address:

In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown.

View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Geochemical speciation and activation risks of Cd, Ni, and Zn in soils with naturally high background in karst regions of southwestern China.

J Hazard Mater

January 2025

MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Agricultural soils in karst regions present a remarkable paradox where high geochemical background levels of heavy metals correspond with unexpectedly low crop uptake, challenging traditional risk assessment frameworks and limiting agricultural development. To decode this paradox, we investigated the geochemical speciation of cadmium (Cd), nickel (Ni), and zinc (Zn) in soil-rice systems in southwestern China, which collectively constitute the world's largest continuous karst region and represent diverse soil weathering stages. We employed three chemical extraction methods that revealed reactive pools ranking as Cd (58.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!