The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208238 | PMC |
http://dx.doi.org/10.3390/s140917548 | DOI Listing |
Sci Rep
January 2025
School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.
This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic.
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH).
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Mechatronics Engineering, North University of China, Taiyuan 030051, China.
To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!