Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.

Circ Heart Fail

From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.).

Published: November 2014

Background: An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF).

Methods And Results: Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle.

Conclusions: Mitochondrial energy metabolic derangements that occur during the early development of pressure overload-induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241130PMC
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001469DOI Listing

Publication Analysis

Top Keywords

energy metabolic
12
failing heart
12
cardiac hypertrophy
12
cardiac remodeling
8
forms cardiac
8
pressure overload
8
data sets
8
mitochondrial energy
8
distinguished pathological
8
pathological physiological
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!