Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3102
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3104
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3104
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitroxides are stable cyclic radicals of diverse size, charge, and lipophilicity. They are cell-permeative, which effectively protects cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The mechanisms of activity through which nitroxides operate are diverse, including superoxide dismutase-mimetic activity, oxidation of semiquinone radicals, oxidation of reduced metal ions, procatalase-mimetic activity, interruption of radical chain reactions, and indirect modulation of NO levels. Nitroxides possess both a nucleophilic (reducing properties) and an electrophilic (oxidizing properties) nature and, therefore, they may affect different cellular pathways. In the current study, a novel mechanism of action by which nitroxides provide skin protection based on their electrophilic nature is suggested. This study shows that nitroxides may act as electrophiles, directly or indirectly, capable of activating the Keap1-Nrf2-ARE pathway in human keratinocytes (HaCaT) and in human skin (human organ culture model). The high potency of oxoammonium cations versus hydroxylamines in activating the system is demonstrated. The mechanism of action by which nitroxides activate the Keap1-Nrf2-ARE pathway is discussed. Understanding the mechanism of activity may expand the usage of nitroxides as a skin protection strategy against oxidative stress-related conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!