Motivation: Co-regulated genes are not identified in traditional microarray analyses, but may theoretically be closely functionally linked [guilt-by-association (GBA), guilt-by-profiling]. Thus, bioinformatics procedures for guilt-by-profiling/association analysis have yet to be applied to large-scale cancer biology. We analyzed 2158 full cancer transcriptomes from 163 diverse cancer entities in regard of their similarity of gene expression, using Pearson's correlation coefficient (CC). Subsequently, 428 highly co-regulated genes (|CC| ≥ 0.8) were clustered unsupervised to obtain small co-regulated networks. A major subnetwork containing 61 closely co-regulated genes showed highly significant enrichment of cancer bio-functions. All genes except kinesin family member 18B (KIF18B) and cell division cycle associated 3 (CDCA3) were of confirmed relevance for tumor biology. Therefore, we independently analyzed their differential regulation in multiple tumors and found severe deregulation in liver, breast, lung, ovarian and kidney cancers, thus proving our GBA hypothesis. Overexpression of KIF18B and CDCA3 in hepatoma cells and subsequent microarray analysis revealed significant deregulation of central cell cycle regulatory genes. Consistently, RT-PCR and proliferation assay confirmed the role of both genes in cell cycle progression. Finally, the prognostic significance of the identified KIF18B- and CDCA3-dependent predictors (P = 0.01, P = 0.04) was demonstrated in three independent HCC cohorts and several other tumors. In summary, we proved the efficacy of large-scale guilt-by-profiling/association strategies in oncology. We identified two novel oncogenes and functionally characterized them. The strong prognostic importance of downstream predictors for HCC and many other tumors indicates the clinical relevance of our findings.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287940 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btu586 | DOI Listing |
J Nat Prod
January 2025
Fungal Natural Products Group, Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, Netherlands.
Xylindein is a blue-green pigment produced by the fungi and Its stunning color and optoelectronic properties make xylindein valuable for textiles and as a natural semiconductor material. However, producing xylindein from culture broths remains challenging because of the slow growth of the species and the poor solubility of xylindein in organic solvents. An alternative production route for obtaining pure xylindein is heterologous expression of the xylindein biosynthetic genes.
View Article and Find Full Text PDFJ Adv Res
January 2025
Introduction: Cyclin-Dependent Kinase 8 (CDK8), a CDK family member, regulates the development of inflammatory processes through transcriptional activation. The involvement of CDK8 in osteoarthritis (OA) progression is not yet understood.
Objectives: This study aims to investigate whether CDK8, through its transcriptional regulatory functions, collaborates with NF-κB in chondrocytes to regulate the transcription of senescence-associated secretory phenotype (SASP) genes, thereby exacerbating the inflammatory microenvironment in the progression of osteoarthritis (OA), and to explore the specific mechanisms involved.
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFNat Genet
January 2025
Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, D-07745 Jena, Germany.
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!