Motivation: Protein phosphorylation is the most common post-translational modification (PTM) regulating major cellular processes through highly dynamic and complex signaling pathways. Large-scale comparative phosphoproteomic studies have frequently been done on whole cells or organs by conventional bottom-up mass spectrometry approaches, i.e at the phosphopeptide level. Using this approach, there is no way to know from where the phosphopeptide signal originated. Also, as a consequence of the scale of these studies, important information on the localization of phosphorylation sites in subcellular compartments (SCs) is not surveyed.
Results: Here, we present a first account of the emerging field of subcellular phosphoproteomics where a support vector machine (SVM) approach was combined with a novel algorithm of discrete wavelet transform (DWT) to facilitate the identification of compartment-specific phosphorylation sites and to unravel the intricate regulation of protein phosphorylation. Our data reveal that the subcellular phosphorylation distribution is compartment type dependent and that the phosphorylation displays site-specific sequence motifs that diverge between SCs.
Availability And Implementation: The method and database both are available as a web server at: http://bioinfo.ncu.edu.cn/SubPhos.aspx.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btu598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!