The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2014.09.005DOI Listing

Publication Analysis

Top Keywords

bone tissue
16
tissue engineering
12
biological physicomechanical
8
tissue
6
bone
5
biomimetic approaches
4
approaches bone
4
engineering integrating
4
integrating biological
4
physicomechanical strategies
4

Similar Publications

Transoral resection of a symptomatic odontoid process aneurysmal bone cyst: illustrative case.

J Neurosurg Case Lessons

January 2025

Departments of Neurosurgery, NYU Langone Health, New York, New York.

Background: Aneurysmal bone cysts (ABCs) are slow-growing, expansile bone tumors most often observed in the long bones and lumbar and thoracic spine. Anterior column ABCs of the spine are rare, and few cases have described their surgical management, particularly for lesions with extension into the odontoid process and the bilateral C2 pedicles. In the present case, the authors describe a two-stage strategy for resection of a symptomatic 2.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Background And Purpose:  Vascularized fibular grafting following tumor resection is an essential treatment option in limb salvage surgery. We aimed to evaluate: (I) bone healing, (II) complications and reoperations, (III) limb salvage, and (IV) survival.

Methods:  We present a retrospective evaluation of a national cohort comprising 27 patients.

View Article and Find Full Text PDF

Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.

View Article and Find Full Text PDF

Background And Purpose:  Early migration of the uncemented cruciate-sacrificing rotating platform ATTUNE and Low Contact Stress (LCS) tibial components was classified as at-risk for aseptic loosening rates exceeding 6.5% at 15 years based on recent fixation-specific migration thresholds. In this secondary report of a randomized controlled trial (RCT) we aimed to evaluate whether the 5-year migration, inducible displacement, and the clinical outcome of the ATTUNE components were comparable to those of the LCS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!