A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Numerical analysis of flow induced noise propagation in supercavitating vehicles at subsonic speeds. | LitMetric

Flow supercavitation begins when fluid is accelerated over a sharp edge, usually at the nose of an underwater vehicle, where phase change occurs and causes low density gaseous cavity to gradually envelop the whole object (supercavity) and thereby enabling higher speeds of underwater vehicles. The process of supercavity inception/development by means of "natural cavitation" and its sustainment through ventilated cavitation result in turbulence and fluctuations at the water-vapor interface that manifest themselves as major sources of hydrodynamic noise. Therefore in the present context, three main sources are investigated, namely, (1) flow generated noise due to turbulent pressure fluctuations around the supercavity, (2) small scale pressure fluctuations at the vapor-water interface, and (3) pressure fluctuations due to direct impingement of ventilated gas-jets on the supercavity wall. An understanding of their relative contributions toward self-noise is very crucial for the efficient operation of high frequency acoustic sensors that facilitate the vehicle's guidance system. Qualitative comparisons of acoustic pressure distribution resulting from aforementioned sound sources are presented by employing a recently developed boundary integral method. By using flow data from a specially developed unsteady computational fluid dynamics solver for simulating supercavitating flows, the boundary-element method based acoustic solver was developed for computing flow generated sound.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4865919DOI Listing

Publication Analysis

Top Keywords

pressure fluctuations
12
flow generated
8
flow
5
numerical analysis
4
analysis flow
4
flow induced
4
induced noise
4
noise propagation
4
propagation supercavitating
4
supercavitating vehicles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!