High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments.

Appl Biochem Biotechnol

Departamento de Bioprocesos, Laboratorio de Biotecnología Ambiental, Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional, Mexico City, 07340, Mexico.

Published: December 2014

Sulfidogenesis in reactors is mostly achieved through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. In this work, an upflow anaerobic sludge blanket (UASB) reactor operated under sulfate-reducing conditions was inoculated with hydrothermal vent sediments to carry out sulfate reduction using volatile fatty acids (VFAs) as substrate and chemical oxygen demand (COD)/SO4 (-2) ratios between 0.49 and 0.64. After a short period of adaptation, a robust non-granular sludge was capable of achieving high sulfate reduction efficiencies while avoiding competence with methanogens and toxicity to the microorganisms due to high sulfide concentration. The highest sulfide concentration (2,552 mg/L) was obtained with acetate/butyrate, and sulfate reduction efficiencies were up to 98 %. A mixture of acetate/butyrate, which produced a higher yielding of HS(-), was preferred over acetate/propionate/butyrate since the consumption of COD was minimized during the process. Sludge was analyzed, and some of the microorganisms identified in the sludge belong to the genera Desulfobacterium, Marinobacter, and Clostridium. The tolerance of the sludge to sulfide may be attributed to the syntrophy among these microorganisms, some of which have been reported to tolerate high concentrations of sulfide. To the best of our knowledge, this is the first report on the analysis of the direct utilization of hydrothermal vent sediments as an alternate source of sludge for sulfate reduction under high sulfide concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-014-1237-zDOI Listing

Publication Analysis

Top Keywords

sulfate reduction
20
hydrothermal vent
12
vent sediments
12
high sulfate
8
sludge
8
reduction efficiencies
8
high sulfide
8
sulfide concentration
8
high
5
reduction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!