DMAEM-based cationic polymers as novel carriers for DNA delivery into cells.

Cell Biol Int

Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo St. 2a, Kyiv, 04123, Ukraine.

Published: March 2015

Different transformation systems and vectors have been improved to increase the effectiveness of transformation and achieve stable expression of target genes. Because classical direct and indirect transformation processes commonly suffer from instability of a gene in the environment, gene deletion, transgene silencing, and poor gene transfer efficiency. Nowadays, gene transformation technologies are based on the use of new carriers (nanoparticles, carbon nanotubes, whiskers, and polymers) characterized by better efficiency and reproducibility for the direct DNA delivery into cells. In this review, we have focused on the novel DMAEM-based direct DNA delivery system and its possible applications for cell transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10381DOI Listing

Publication Analysis

Top Keywords

dna delivery
12
delivery cells
8
direct dna
8
transformation
5
dmaem-based cationic
4
cationic polymers
4
polymers novel
4
novel carriers
4
carriers dna
4
cells transformation
4

Similar Publications

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Background: Emerging evidence support the notion that loss of splicing repression by TDP-43, an RNA binding protein that was first implicated in ALS-FTD, underlies their pathogenesis. Previously, we showed that delivery of an AAV9 vector at early postnatal day expressing a fusion protein, termed CTR comprised of the N-terminal region of TDP-43 and an unrelated splicing repressor termed RAVER1 complemented the loss of TDP-43 in mice lacking TDP-43 in spinal motor neurons (ChAT-IRES-Cre;tardbp mice). To translate this potential therapeutic strategy to the clinic, it will be important to demonstrate benefit of such AAV delivery of CTR to motor neurons in adult mice.

View Article and Find Full Text PDF

Background: TDP-43 proteinopathy, initially discovered in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coexists with tauopathy in a variety of neurodegenerative disorders, including Alzheimer's Disease (AD). While such co-pathology is strongly associated with worsened neurodegeneration and steeper cognitive decline, how these two pathologies influence each other to exacerbate neuron loss remains elusive. That loss of TDP-43 splicing repression occurring in presymptomatic ALS-FTD suggests that loss of TDP-43 function could facilitate the pathological conversion of tau to accelerate tauopathy and neuron loss.

View Article and Find Full Text PDF

HDAC6 deacetylates TRIM56 to negatively regulate cGAS-STING-mediated type I interferon responses.

EMBO Rep

January 2025

Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, 510632, Guangzhou, China.

Histone deacetylase HDAC6 has been implicated in regulating antiviral innate immunity. However, its precise function in response to DNA virus infection remains elusive. Herein, we find that HDAC6 deficiency promotes the activation of cGAS-STING signaling and type I interferon (IFN) production, both in vitro and in vivo, resulting in a decrease in HSV-1 infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!