Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2014.08.018 | DOI Listing |
Sci Rep
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
Many types of spatiotemporal patterns have been observed under nonequilibrium conditions. Cycling through four or more states can provide specific dynamics, such as the spatial coexistence of multiple phases. However, transient dynamics have only been studied by previous theoretical models, since absorbing transition into a uniform phase covered by a single state occurs in the long-time limit.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.
View Article and Find Full Text PDFNat Mater
January 2025
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Anode-free solid-state batteries contain no active material at the negative electrode in the as-manufactured state, yielding high energy densities for use in long-range electric vehicles. The mechanisms governing charge-discharge cycling of anode-free batteries are largely controlled by electro-chemo-mechanical phenomena at solid-solid interfaces, and there are important mechanistic differences when compared with conventional lithium-excess batteries. This Perspective provides an overview of the factors governing lithium nucleation, growth, stripping and cycling in anode-free solid-state batteries, including mechanical deformation of lithium, the chemical and mechanical properties of the current collector, microstructural effects, and stripping dynamics.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China.
Aqueous zinc ion batteries exhibit great prospects due to their low cost and high safety, while their lifespan is limited by severe dendritic growth problems. Herein, we develop an anti-dendrite hot-pressing separator interlayer through a mass-producible hot-pressing strategy, by spreading metal-organic framework (MOF) precursor on nonwoven matrix followed by a simple hot-pressing process. The in situ modification of MOF crystals on fiber surface processes abundant nitrogenous functional groups and high specific surface area (190.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!