Escherichia coli topoisomerases I and III can decatenate double-stranded DNA (dsDNA) molecules containing single-stranded DNA regions or nicks as well as relax negatively supercoiled DNA. Although the proteins share a mechanism of action and have similar structures, they participate in different cellular processes. Whereas topoisomerase III is a more efficient decatenase than topoisomerase I, the opposite is true for DNA relaxation. In order to investigate the differences in the mechanism of these two prototypical type IA topoisomerases, we studied DNA decatenation at the single-molecule level using braids of intact dsDNA and nicked dsDNA with bulges. We found that neither protein decatenates an intact DNA braid. In contrast, both enzymes exhibited robust decatenation activity on DNA braids with a bulge. The experiments reveal that a main difference between the unbraiding mechanisms of these topoisomerases lies in the pauses between decatenation cycles. Shorter pauses for topoisomerase III result in a higher decatenation rate. In addition, topoisomerase III shows a strong dependence on the crossover angle of the DNA strands. These real-time observations reveal the kinetic characteristics of the decatenation mechanism and help explain the differences between their activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191389PMC
http://dx.doi.org/10.1093/nar/gku785DOI Listing

Publication Analysis

Top Keywords

topoisomerase iii
12
dna
9
dna decatenation
8
topoisomerases iii
8
decatenation
6
iii
5
single-molecule analysis
4
analysis uncovers
4
uncovers difference
4
difference kinetics
4

Similar Publications

The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5-indeno[2,1-]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF·EtO. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-]quinolin-7-one phosphine oxides .

View Article and Find Full Text PDF

Oleanolic Acid Modulates DNA Damage Response to Camptothecin Increasing Cancer Cell Death.

Int J Mol Sci

December 2024

Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.

Targeting DNA damage response (DDR) pathways represents one of the principal approaches in cancer therapy. However, defects in DDR mechanisms, exhibited by various tumors, can also promote tumor progression and resistance to therapy, negatively impacting patient survival. Therefore, identifying new molecules from natural extracts could provide a powerful source of novel compounds for cancer treatment strategies.

View Article and Find Full Text PDF

Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N)] (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.

View Article and Find Full Text PDF

Background: As a master immune system regulator, transforming growth factor β1 (TGF-β1) is closely linked to the complicated pathophysiology and development of systemic sclerosis (SSc), a multisystem fibrotic disease.

Objective: We aim to evaluate the transcriptional levels of TGF-β1 mRNA in PBMCs, assess the TGF-β1 serum levels of SSc patients, and compare them with those of healthy subjects.

Methods: PBMCs were isolated from whole blood of 50 SSc patients and in 30 healthy controls.

View Article and Find Full Text PDF

PNKP safeguards stalled replication forks from nuclease-dependent degradation during replication stress.

Cell Rep

December 2024

Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt. Electronic address:

Uncontrolled degradation and collapse of stalled replication forks (RFs) are primary sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse remain to be fully elaborated. Here, we show that polynucleotide kinase-phosphatase (PNKP) localizes at stalled forks and protects stalled forks from excessive degradation. The loss of PNKP results in nucleolytic degradation of nascent DNA at stalled RFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!