Six species of Cystangium, a genus of sequestrate taxa related to Russula, were collected in Patagonia (Argentina and Chile) during autumn 2001. Two species, C. depauperatum Singer & A.H. Sm. and C. nothofagi (E. Horak) Trappe, Castellano & T. Lebel, were already known from this region, while four new species, C. domingueziae, C. gamundiae, C. grandihyphatum and C. longisterigmatum, are described, illustrated and a key to the species is provided. In addition, sequences of the ITS (rDNA) region were obtained to explore the phylogenetic relationships of our South American Cystangium species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3852/13-302 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Blood Components and Devices, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.
View Article and Find Full Text PDFSci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Kyungbook, Republic of Korea.
Alanine racemase (Alr) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent racemization between L- and D-alanine in bacteria. Owing to the potential interest in targeting Alr for antibacterial drug development, several studies have determined the structures of Alr from different species, proposing models for the reaction mechanism. Insights into its reaction dynamics may be conducive to a better understanding of the Alr reaction mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!