Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium-calmodulin-dependent protein kinase II and protein kinase C that underlie long-term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over-expression of PKMζ; pre-treatment with either the IR inhibitor 3-Bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo-substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre-treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin-dependent PKMζ over-expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.12947 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!