GATA-binding proteins 1 (GATA1) and 2 (GATA2) are zinc-finger transcription factors and belong to the GATA family proteins 1-6. GATA1 interacts with the TP53 tumor suppressor gene, and both GATAs have been shown to be involved in cell growth, apoptosis, and tumorigenesis of several solid tumors. GATA1 and GATA2 expression alterations are associated with poor survival and adverse clinicopathology in prostate and colorectal cancer, while the significance and prognostic value in clear cell renal cell carcinoma (ccRCC) has not been investigated as yet. We investigated relative messenger RNA (mRNA) expression levels of GATA1 and GATA2 in 77 ccRCC and 58 paired adjacent noncancerous renal tissues by quantitative real-time reverse-transcribed PCR. Relative mRNA expression levels were determined using the ΔΔCt method. GATA1 and GATA2 expression levels were significantly decreased in tumor tissues compared with normal tissues (p < 0.001, paired t test). In univariate logistic regression analysis, decreased GATA1 and GATA2 expression levels were associated with advanced tumor disease (p = 0.005 and 0.008), positive distant metastasis (p = 0.03 and 0.001), and lymph node metastasis status (p = 0.011 and 0.038). Reduced expression levels of GATA1 and GATA2 were associated with an increased risk of disease recurrence (p = 0.005 and 0.006; hazard ratio = 0.05 and 0.21). Pairwise bivariate analysis after adjusting for clinicopathological parameters revealed relative mRNA expression of GATA1, but not GATA2, as an independent candidate prognosticator for ccRCC. Our results support that GATA1 and GATA2 are involved in ccRCC tumor biology possibly affecting tumor development and aggressiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11523-014-0335-8 | DOI Listing |
Sci Rep
October 2024
Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France.
New hematopoietic cell models have recently emerged through immortalization of CD34 cells to study and understand various molecular mechanisms of erythropoiesis. Here, we characterize the JK-1 CML-derived cell line, previously shown to spontaneously differentiate without cytokines. Using an epigenetic differentiation inhibitor that keeps JK-1 in an early differentiation phase, we characterized 2 progenitor stages: BFU-E JK-1 and CFU-E JK-1 with CD34+/CD36- and CD34-/CD36 + phenotypes respectively.
View Article and Find Full Text PDFRinsho Ketsueki
October 2024
Department of Molecular Hematology, Tohoku University Graduate School of Medicine.
Blood Cells Mol Dis
February 2025
Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan. Electronic address:
Mol Reprod Dev
May 2024
TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India.
This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role.
View Article and Find Full Text PDFMol Med Rep
June 2024
State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China.
During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP‑like cell line HEL western blotting, RT‑qPCR, lentivirus‑mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation‑specific (ETS) transcription factor friend leukemia integration factor 1 (Fli‑1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1‑mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!