Environmental temperature variation can influence physiology, biogeography, and life history, with large consequences for ecology, evolution, and the impacts of climate change. Based on the seasonality hypothesis, greater annual temperature variation at high latitudes should result in greater thermal tolerance and, consequently, larger elevational ranges in temperate compared to tropical species. Despite the mechanistic nature of this hypothesis, most research has used latitude as a proxy for seasonality, failing to directly examine the impact of temperature variation on physiology and range size. We used phylogenetically matched beetles from locations spanning 60 degrees of latitude to explore links between seasonality, physiology and elevational range. Thermal tolerance increased with seasonality across all beetle groups, but realized seasonality (temperature variation restricted to the months species are active) was a better predictor of thermal tolerance than was annual seasonality. Additionally, beetles with greater thermal tolerance had larger elevational ranges. Our results support a mechanistic framework linking variation in realized temperature to physiology and distributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/13-1703.1 | DOI Listing |
Conserv Physiol
May 2024
Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Canberra, Australian Capital Territory, Australia.
Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.
View Article and Find Full Text PDFEcology
January 2025
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
The distribution and abundance of ectothermic mosquitoes are strongly affected by temperature, but mechanisms remain unexplored. We describe the effect of temperature on the transcriptome of Anopheles stephensi, an invasive vector of human malaria. Adult females were maintained across a range of mean temperatures (20 °C, 24 °C and 28 °C), with daily fluctuations of +5 °C and -4 °C at each mean temperature.
View Article and Find Full Text PDFSci Adv
January 2025
Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, South Korea.
Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!