Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167856 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107569 | PLOS |
ACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
The addition of organic cationic iodides to form low-dimensional perovskite is an essential strategy for defect passivation in perovskite solar cells (PSCs). Specially, the 2D/3D perovskite structure can combine the stability of 2D perovskite and the high charge transport performance of 3D perovskite. Here, we introduced phenylammonium hydroiodide salts with different alkyl chain lengths into PSCs precursor solution to research the influence on formation of perovskite thin films and the photovoltaic performance of PSCs.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China.
Quinoa () is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (), plays important roles in the development, yield, and quality of crops. Many and their functions have been identified in major crops; however, no systematic analyses of and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China.
In order to reveal the effects of microplastics (MPs) on the growth and rhizosphere soil environmental effects of wheat ( L.), three microplastic types (polypropylene MPs (PP-MPs), high-density polyethylene MPs (HDPE-MPs), and polylactic acid MPs (PLA-MPs)), particle sizes (150, 1000, and 4000 μm), and concentrations (0.1, 0.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan.
Proline is the most abundant amino acid in wine and beer, largely due to the limited utilization of proline by the yeast during fermentation. Previous studies have shown that the arginine transporter Can1 plays a role in regulating proline utilization by acting as a transceptor, combining the functions of both a transporter and a receptor for basic amino acids. However, the -disrupted strains have exhibited the inhibition of proline utilization under nutrient-rich conditions, indicating that additional factors beyond basic amino acids contribute to the inhibition of proline utilization.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia.
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!