New Phytol
College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Published: January 2015
Overexpression of bacterial γ-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd(2+) influx in association with H(+) /Ca(2+) , Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd(2+) influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd(2+) transport and detoxification in wild-type and transgenic poplars. Poplars exhibited highest net Cd(2+) influxes into roots at pH 5.5 and 0.1 mM Ca(2+) . Transgenics had higher Cd(2+) uptake rates and elevated transcript levels of several genes involved in Cd(2+) transport and detoxification compared with wild-type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild-type plants in response to Cd(2+) exposure. Moreover, transgenic poplars had lower concentrations of O2 ˙(-) and H2 O2 ; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild-type plants. These results indicate that transgenics are more tolerant of 100 μM Cd(2+) than wild-type plants, probably due to the GSH-mediated induction of the transcription of genes involved in Cd(2+) transport and detoxification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.13013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.