Specific binding of human C-reactive protein to human monocytes in vitro.

J Immunol

Department of Medicine, Case Western Reserve University, Cleveland Metropolitan General Hospital, OH 44109.

Published: April 1989

The precise biologic function of C-reactive protein (CRP), a major acute phase protein in man, is unknown. The abilities of CRP to bind biologic substrates and to activate the C pathway, and its localization at sites of inflammation argue for an opsonic role for this protein. Such a role has been supported by recent reports of specific binding of CRP to neutrophils. Using highly purified radioiodinated human CRP, we have observed specific binding of this protein to human monocytes in vitro. The binding was reversible and rapid, with a t1/2 for the dissociation reaction of approximately 3 min. Binding was saturable at a CRP concentration of approximately 0.2 microM, with an estimated K from Scatchard analysis of 1.1 x 10(-7) M. Specific binding was calcium-dependent, with optimal binding occurring at calcium concentrations of more than 1.0 mM. No specific binding could be demonstrated to a non-adherent population of mononuclear cells (more than 80% lymphocytes). In other experiments, a 100-fold excess of human IgG failed to inhibit binding, although rabbit CRP produced competitive inhibition of binding which was quantitatively similar to human CRP. The binding was maximal at pH 7.4 and was sensitive to prior trypsin treatment of cells. These studies provide direct evidence for specific binding of soluble human CRP to human monocytes in vitro and thus provide further support for an important functional interaction of this acute phase protein with phagocytic cells in man.

Download full-text PDF

Source

Publication Analysis

Top Keywords

specific binding
24
human monocytes
12
monocytes vitro
12
human crp
12
binding
11
human
8
c-reactive protein
8
protein human
8
crp
8
acute phase
8

Similar Publications

The identification of neoantigens is crucial for advancing vaccines, diagnostics, and immunotherapies. Despite this importance, a fundamental question remains: how to model the presentation of neoantigens by major histocompatibility complex class I molecules and the recognition of the peptide-MHC-I (pMHC-I) complex by T cell receptors (TCRs). Accurate prediction of pMHC-I binding and TCR recognition remains a significant computational challenge in immunology due to intricate binding motifs and the long-tail distribution of known binding pairs in public databases.

View Article and Find Full Text PDF

A comprehensive benchmarking for evaluating TCR embeddings in modeling TCR-epitope interactions.

Brief Bioinform

November 2024

Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China.

The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis.

View Article and Find Full Text PDF

Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively.

View Article and Find Full Text PDF

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!