Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

PLoS One

Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.

Published: December 2015

Phloridzin (phlorizin or phloretin 2'-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated through the attenuated expression of several key proteins involved in cell cycle regulation, DNA topoisomerases IIα activity and epigenetic mechanisms followed by cell cycle arrest and apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167698PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107149PLOS

Publication Analysis

Top Keywords

esters phloridzin
20
fatty acid
12
acid esters
12
cell cycle
12
phloridzin
11
cancer cells
8
gene expression
8
human cancer
8
fatty acids
8
chemotherapeutic drugs
8

Similar Publications

Due to their broad spectrum of biological activities and attractive pharmacological properties, flavonoids are very promising molecules for application in skin care products. In this study, phloridzin and naringin medium- and long-chain fatty acid esters were enzymatically synthesized in reaction with natural oils (coconut and linseed oil) and transdermal delivery of synthesized esters through artificial Strat-M membrane was investigated. Experimental results were succesfully fitted using Peppas and Sahlin model which includes the phase.

View Article and Find Full Text PDF

Angiogenesis is a normal physiological process that also contributes to diabetic retinopathy-related complications and facilitates tumor metastasis by promoting the hematogenic dissemination of malignant cells from solid tumors. Here, we investigated the in vitro, ex vivo, and in vivo anti-angiogenic activity of phloridzin docosahexaenoate (PZ-DHA), a novel ω-3 fatty acid ester of a flavonoid precursor. Human umbilical vein endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) treated with a sub-cytotoxic concentration of PZ-DHA to assess in vitro anti-angiogenic activity showed impaired tubule formation on a Matrigel matrix.

View Article and Find Full Text PDF

Arbutin, salidroside, polydatin, and phlorizin are typically natural bioactive phenolic glycosides. To improve the liposolubility and bioavailability, highly liposoluble derivatives including 6'--lauryl arbutin, 6'--lauryl salidroside, 6″--lauryl polydatin, and 6″--lauryl phlorizin were efficiently synthesized by enzymatic acylation in a green solvent 2-MeTHF. Their reaction conversions reached 84.

View Article and Find Full Text PDF

Background: Docosahexaenoic acid-acylated phloridzin (PZ-DHA), a novel polyphenol fatty acid ester derivative, is synthesized through an acylation reaction of phloridzin (PZ) and docosahexaenoic acid (DHA). PZ-DHA is more stable than DHA and exhibits higher cellular uptake and bioavailability than PZ.

Objective: The study aims to investigate the effects of PZ-DHA on insulin resistance in the skeletal muscle and the related mechanisms; we used palmitic acid (PA)-treated C2C12 myotubes as an insulin resistance model.

View Article and Find Full Text PDF

Phlorizin attenuates visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome.

Biomed Pharmacother

July 2021

Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.

Visceral hypersensitivity and impaired gut barrier are crucial contributors to the pathophysiology of irritable bowel syndrome (IBS), and those are mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4-pro-inflammatory cytokine signaling. Phlorizin is an inhibitor of sodium-linked glucose transporters (SGLTs), and known to have anti-cytokine properties. Thus, we hypothesized that phlorizin may improve these gastrointestinal changes in IBS, and tested this hypothesis in rat IBS models, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!