Long term depression (LTD) is a neuronal learning mechanism after low frequency stimulation (LFS). This study compares two types of electrodes (concentric vs. matrix) and stimulation frequencies (4 and 30 Hz) to examine homo- and heterosynaptic effects indirectly depicted from the somatosensory profile of healthy subjects. Both electrodes were compared in a prospective, randomized, controlled cross-over study using 4 Hz as the conditioning LFS compared to 30 Hz (intended sham condition). Quantitative sensory testing (QST) was used to examine 13 thermal and mechanical detection and pain thresholds. Sixteen healthy volunteers (10 women, age 31.0 ± 12.7 years) were examined. Depending on the electrodes and frequencies used a divergent pattern of sensory minus signs occurred. Using LFS the concentric electrode increased thermal thresholds, while the matrix electrode rather increased mechanical including deep pain thresholds. Findings after cutaneous neuromodulation using LFS and a matrix electrode are consistent with the concept of heterosynaptic LTD in the human nociceptive system, where deep pain sensitivity was reduced after superficial stimulation of intraepidermal nerve fibres. Cutaneous neuromodulation using LFS and a matrix electrode may be a useful tool to influence deep pain sensitivity in a variety of chronic pain syndromes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168234PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107718PLOS

Publication Analysis

Top Keywords

matrix electrode
16
deep pain
16
pain sensitivity
12
heterosynaptic human
8
human nociceptive
8
nociceptive system
8
pain thresholds
8
electrode increased
8
cutaneous neuromodulation
8
neuromodulation lfs
8

Similar Publications

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.

View Article and Find Full Text PDF

Objective To develop an algorithm, based on the voltage matrix, for detecting regular cochlear implant (CI) electrode position during the implantation procedure, tip fold-over or basal kinking for lateral-wall electrodes. The availability of an algorithm would be valuable in clinical routine, as incorrect positioning of the electrode array can potentially be recognized intraoperatively. Design In this retrospective study intraoperative voltage matrix and postoperative digital volume tomography of 525 CI recipients were analyzed.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

An Ultrastable Integrated Anode with ∼95 wt.% SiO via In Situ Electrode-Scale Conformal Coating.

ACS Nano

January 2025

Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!