Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The genetic treatment of neurodegenerative diseases still remains a challenging task since many approaches fail to deliver the therapeutic material in relevant concentrations into the brain. As viral vectors comprise the risk of immune and inflammatory responses, human serum albumin (HSA) nanoparticles were found to represent a safer and more convenient alternative. Their ability to cross the blood-brain barrier (BBB) and deliver drugs into the brain in order to enhance gene-based therapy has been previously demonstrated. The present study deals with the development of pGL3-PEI-coated HSA nanoparticles and subsequent in vitro testing in cerebellar granular and HeLa cells. The luciferase control vector pGL3 was chosen as reporter plasmid encoding for the firefly luciferase protein, linear polyethylenimine (22 kDa) as endosomolytic agent for enhancing the cells' transfection. Studies on particle characteristics, their cellular uptake into aforementioned cell lines and on subcellular localisation, and transfection efficiency in the cerebellar cells proved the feasibility of nanoparticle-based gene delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168126 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107603 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!