The pivotal step on the mitochondrial pathway to apoptosis is permeabilization of the mitochondrial outer membrane (MOM) by oligomers of the B-cell lymphoma-2 (Bcl-2) family members Bak or Bax. However, how they disrupt MOM integrity is unknown. A longstanding model is that activated Bak and Bax insert two α-helices, α5 and α6, as a hairpin across the MOM, but recent insights on the oligomer structures question this model. We have clarified how these helices contribute to MOM perforation by determining that, in the oligomers, Bak α5 (like Bax α5) remains part of the protein core and that a membrane-impermeable cysteine reagent can label cysteines placed at many positions in α5 and α6 of both Bak and Bax. The results are inconsistent with the hairpin insertion model but support an in-plane model in which α5 and α6 collapse onto the membrane and insert shallowly to drive formation of proteolipidic pores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191798 | PMC |
http://dx.doi.org/10.1073/pnas.1415142111 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
Background: Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea. Electronic address:
For the first time, our study provides a comprehensive examination of the anti-cancer effects of structural isomers of carene in breast cancer cells, specifically focusing on cell cycle inhibition and the induction of apoptosis. We utilized the hydro-distillation method to extract Piper nigrum seed essential oil (PNS-EO) and identified its bioactive components through gas chromatography-mass spectrometry (GC-MS) analysis. A total of 46 bioactive compounds were isolated via hydro-distillation, identified through GC-MS analysis, and validated by co-injection using GC analysis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Plant Science, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
The present study aims to explore the anticancer efficacy of Diosmin by inducing mitochondrial-mediated apoptosis in human epidermoid carcinoma cells (Hep-2). This is done by cell line assays and studying crucial inflammatory and apoptotic signaling molecules. The cytotoxicity property of Diosmin was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
View Article and Find Full Text PDFApoptosis
December 2024
Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, 247667, India.
This study aims to investigate the in vitro antiproliferative and pro-apoptotic/apoptotic potential of active constituents of essential oils on two cancer cell lines; namely, breast adenocarcinoma (MCF-7) and urinary bladder cancer (T24). Essential oils active constituents (EO-ACs) entail a spectrum of phytochemicals with widely demonstrated anticancer potential. We assessed the effects of eight essential oils active constituents on T24 and MCF-7 cell lines in both dose- (16-1024 µg/mL) and time-dependent manners.
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:
Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!