Background/aims: Stress exacerbates neuron loss in many CNS injuries via the actions of adrenal glucocorticoid (GC) hormones. For some injuries, this GC endangerment of neurons is accompanied by greater immune cell activation in the CNS, a surprising outcome given the potent immunosuppressive properties of GCs.

Methods: To determine whether the effects of GCs on inflammation contribute to neuron death or result from it, we tested whether nonsteroidal anti-inflammatory drugs could protect neurons from GCs during kainic acid excitotoxicity in adrenalectomized male rats. We next measured GC effects on (1) chemokine production (CCL2 and CINC-1), (2) signals that suppress immune activation (CX3CL1, CD22, CD200, and TGF-β), and (3) NF-κB activity.

Results: Concurrent treatment with minocycline, but not indomethacin, prevented GC endangerment. GCs did not substantially affect CCL2, CINC-1, or baseline NF-κB activity, but they did suppress CX3CL1, CX3CR1, and CD22 expression in the hippocampus - factors that normally restrain inflammatory responses.

Conclusions: These findings demonstrate that cellular inflammation is not necessarily suppressed by GCs in the injured hippocampus; instead, GCs may worsen hippocampal neuron death, at least in part by increasing the neurotoxicity of CNS inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304880PMC
http://dx.doi.org/10.1159/000367849DOI Listing

Publication Analysis

Top Keywords

male rats
8
neuron death
8
ccl2 cinc-1
8
gcs
5
glucocorticoids increase
4
increase excitotoxic
4
excitotoxic injury
4
inflammation
4
injury inflammation
4
inflammation hippocampus
4

Similar Publications

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Objective: Recent studies have demonstrated the positive effects of sacubitril/valsartan and dapagliflozin on cardiac prognosis and performance. These drugs have the potential to be misused as doping agents by professional athletes. This study aimed to evaluate the effects of sacubitril/valsartan and dapagliflozin on athletic performance.

View Article and Find Full Text PDF

Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.

View Article and Find Full Text PDF

Studies have demonstrated that resveratrol exerts several pharmacological effects. However, the pharmacokinetic parameters are not completely established. This study describes the plasma pharmacokinetics and tissue distribution of resveratrol after administration by different routes and doses in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!