The architecture of the spinal cord makes efficient delivery of recombinant adeno-associated virus (rAAV) vectors throughout the neuraxis challenging. We describe a paradigm in which small amounts of virus delivered intraspinally to newborn mice result in robust rAAV-mediated transgene expression in the spinal cord. We compared the efficacy of rAAV2/1, 2/5, 2/8, and 2/9 encoding EGFP delivered to the hindlimb muscle (IM), cisterna magna (ICM), or lumbar spinal cord (IS) of neonatal pups. IS injection of all four capsids resulted in robust transduction of the spinal cord with rAAV2/5, 2/8, and 2/9 vectors appearing to be transported to brain. ICM injection resulted in widespread expression of EGFP in the brain, and upper spinal cord. IM injection resulted in robust muscle expression, with only rAAV2/8 and 2/9 transducing spinal motor and sensory neurons. As proof of concept, we use the IS paradigm to express murine Interleukin (IL)-10 in the spinal cord of the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. We show that expression of IL-10 in the spinal axis of SOD1-G93A mice altered the immune milieu and significantly prolonged survival. These data establish an efficient paradigm for somatic transgene delivery of therapeutic biologics to the spinal cord of mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426802 | PMC |
http://dx.doi.org/10.1038/mt.2014.180 | DOI Listing |
Rehabil Nurs
December 2024
Center of Innovation for Complex Chronic Healthcare, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA.
Purpose: The study purpose was to develop and assess a simulation for registered nurses to apply knowledge, skills, and attitudes in conducting a focused assessment in the clinic setting to prevent community-acquired pressure injuries (CAPrIs) in individuals living with spinal cord injury (SCI).
Methods: Development, psychometric assessment, and pilot of a simulation for a nurse-patient clinic appointment to prevent CAPrIs at home. Evaluations were conducted via focus group.
Global Spine J
January 2025
Department of Spinal Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
Study Design: Retrospective Cohort Study.
Objectives: The current recommended treatment for Giant Cell Tumour (GCT) of the spine is en bloc excision. Denosumab is a monoclonal antibody reducing osteoclast activity that shows promising results when used as a neo - adjuvant treatment.
Cell Rep
January 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan. Electronic address:
Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, China.
Background: The spinal arteriovenous malformations (sAVMs) have been challenging entities to diagnose and treat. The small structure, important function, and complex vascular anatomy of the spinal cord increase the difficulty of treating sAVMs.
Objective: The combining holistic and local perspectives in the diagnosis and treatment of sAVMs were provided to teach spinal vascular anatomy and AVMs.
Eur Spine J
January 2025
Aix-Marseille University, CNRS, CRMBM, Marseille, France.
Background And Purpose: Degenerative cervical myelopathy (DCM) is the most common cause of spinal cord (SC) dysfunction. In routine clinical practice, SC changes are well depicted using conventional MRI, especially T2-weighted imaging. However, this modality usually fails to provide satisfactory clinico-radiological correlations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!