Background: Concurrent chemo-radiotherapy is the recommended standard treatment modality for patients with locally advanced lung cancer. The purpose of three-dimensional conformal radiotherapy (3DCRT) is to minimize normal tissue damage while a high dose can be delivered to the tumor. The most common dose limiting side effect of thoracic RT is radiation pneumonia (RP). In this study we evaluated the relationship between dose-volume histogram parameters and radiation pneumonitis. This study targeted prediction of the possible development of RP and evaluation of the relationship between dose-volume histogram (DVH) parameters and RP in patients undergoing 3DCRT.
Materials And Methods: DVHs of 41 lung cancer patients treated with 3DCRT were evaluated with respect to the development of grade ≥ 2 RP by excluding gross tumor volume (GTV) and planned target volume (PTV) from total (TL) and ipsilateral (IPSI) lung volume.
Results: Were admitted statistically significant for p<0.05.
Conclusions: The cut-off values for V5, V13, V20, V30, V45 and the mean dose of TL-GTV; and V13, V20,V30 and the mean dose of TL-PTV were statistically significant for the development of Grade ≥ 2 RP. No statistically significant results related to the development of Grade ≥ 2 RP were observed for the ipsilateral lung and the evaluation of PTV volume. A controlled and careful evaluation of the dose-volume histograms is important to assess Grade ≥ 2 RP development of the lung cancer patients treated with concurrent chemo-radiotherapy. In the light of the obtained data it can be said that RP development may be avoided by the proper analysis of the dose volume histograms and the application of optimal treatment plans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7314/apjcp.2014.15.17.7371 | DOI Listing |
J Breath Res
January 2025
School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.
Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2112 Cyprus.
Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Research Institute of the, McGill University Health Centre, Montreal, QC, Canada.
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!