Background: RAS mutations have been reported to be a potential prognostic factor in patients with colorectal liver metastases (CLM). However, the impact of RAS mutations on response to chemotherapy remains unclear. The purpose of this study was to investigate the correlation between RAS mutations and response to preoperative chemotherapy and their impact on survival in patients undergoing curative resection of CLM.
Methods: RAS mutational status was assessed and its relation to morphologic response and pathologic response was investigated in 184 patients meeting inclusion criteria. Predictors of survival were assessed. The prognostic impact of RAS mutational status was then analyzed using two different multivariate models, including either radiologic morphologic response (model 1) or pathologic response (model 2).
Results: Optimal morphologic response and major pathologic response were more common in patients with wild-type RAS (32.9 and 58.9%, respectively) than in patients with RAS mutations (10.5 and 36.8%; P = 0.006 and 0.015, respectively). Multivariate analysis confirmed that wild-type RAS was a strong predictor of optimal morphologic response [odds ratio (OR), 4.38; 95% CI 1.45-13.15] and major pathologic response (OR, 2.61; 95% CI 1.17-5.80). RAS mutations were independently correlated with both overall survival and recurrence free-survival (hazard ratios, 3.57 and 2.30, respectively, in model 1, and 3.19 and 2.09, respectively, in model 2). Subanalysis revealed that RAS mutational status clearly stratified survival in patients with inadequate response to preoperative chemotherapy.
Conclusions: RAS mutational status can be used to complement the current prognostic indicators for patients undergoing curative resection of CLM after preoperative modern chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318708 | PMC |
http://dx.doi.org/10.1245/s10434-014-4042-6 | DOI Listing |
Mol Cancer
January 2025
Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.
Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.
Hum Pathol
January 2025
Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland.
Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.
View Article and Find Full Text PDFCancer Metastasis Rev
January 2025
School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Mutations in the KRAS gene are well-known tumourigenic drivers of colorectal, pancreatic and lung cancers. Mechanistically, these mutations promote uncontrolled cell proliferation and alter the tumour microenvironment during early carcinoma stages. Given their critical carcinogenic functions, significant progress has been made in developing KRAS inhibitors for cancer treatment.
View Article and Find Full Text PDFNat Commun
January 2025
Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!