Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

Ground Water

Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.

Published: March 2016

The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.12256DOI Listing

Publication Analysis

Top Keywords

groundwater flow
32
energy load
12
array configuration
12
multi-bhe systems
12
groundwater
10
impact groundwater
8
flow
8
multiple borehole
8
borehole heat
8
heat exchangers
8

Similar Publications

Riverbank filtration is a cost-effective and efficient method for drinking water production, using the natural filtration capacity of the river gravelbed. Removal efficiency for organic micropollutants (OMP) in field studies is generally calculated by comparing the concentrations measured in surface water and in the wells either on the same day or with a shift of fixed time interval, neither of which can account for the variability of surface water quality and travel time in the aquifer. The present study proposes a novel method based on travel time distribution determined by a numerical transport model with a hypothesis that it will provide more reliable estimate for OMP removal.

View Article and Find Full Text PDF

Immobilization of per- and polyfluorinated alkyl substances (PFAS) from field contaminated groundwater by a novel organo-clay vs. colloidal activated carbon under flow conditions.

J Hazard Mater

January 2025

University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany. Electronic address:

Two novel and unique adsorptive materials, one (Fluorolock®) from clay mineral sepiolite coated with the cationic polymer polydiallyldimethylammionium chloride (pDADMAC) and the other (Intraplex®) from colloidal activated carbon were specially developed for the in situ remediation of per- and polyfluoroalkyl substances (PFAS) in the saturated zone. We evaluated the potential of both materials to immobilize PFAS in soils under flow conditions via soil column experiments using groundwater, which was contaminated with PFAS in the field. Furthermore, the potential ecotoxicological effects of both materials on aquatic organisms were assessed by exposing the soil column effluent to Daphnia magna.

View Article and Find Full Text PDF

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

From solubility to efficiency: Per- and polyfluoroalkyl substances (PFAS) regeneration from anion exchange resins.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:

This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).

View Article and Find Full Text PDF

High through-put groundwater arsenic speciation analysis using an automated flow analyzer.

J Environ Sci (China)

July 2025

State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363000, China. Electronic address:

The occurrence of geogenic arsenic (As) in groundwater is a global public health concern. However, there remain large gaps in groundwater As data, making it difficult to identify non-compliant domestic wells, partly due to lack of low-cost methods capable of rapid As analysis. Therefore, the development of high through-put and reliable on-site determination methods for inorganic As is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!