Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glu147DOI Listing

Publication Analysis

Top Keywords

muscle mass
12
mitochondrial deficit
12
skeletal muscle
8
mass function
8
oxidative metabolism
8
oxidative mitochondrial
8
mstn inhibition
8
aicar treatment
8
mstn mice
8
muscle
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!