A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification of osteoarticular joint defects through bone segmentation and modeling. | LitMetric

Quantification of osteoarticular joint defects through bone segmentation and modeling.

Biomed Mater Eng

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China.

Published: June 2015

Shoulder instability is a major threat to people's daily life. Many patients suffer from shoulder instability such as the loss of the glenoid and humeral head. In clinical practice, an accurate 3D structure estimation of damaged joints is necessary to diagnose and treat bone defects. This study quantifies osteoarticular defects through the modeling and visualization of osteoarticular structures. An improved algorithm to extract the 3D structure of the bones is proposed. The bone contour is then automatically extracted using prior shape and gray scale intensity distribution of joint CT images. Joint structures with mirror symmetry are matched using the Iterative Closest Point registration algorithm. Osteoarticular defects can be quantified on the basis of the symmetric information of the bones. Experimental results demonstrate that the proposed method can effectively segment the joint structures from the CT image. In addition, the proposed mirror symmetrical method can effectively estimate osteoarticular defects.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-141172DOI Listing

Publication Analysis

Top Keywords

osteoarticular defects
12
shoulder instability
8
joint structures
8
method effectively
8
defects
5
quantification osteoarticular
4
joint
4
osteoarticular joint
4
joint defects
4
defects bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!