Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-invasive pressure simulators that regenerate oscillometric waveforms promise an alternative to expensive clinical trials for validating oscillometric noninvasive blood pressure devices. However, existing simulators only provide oscillometric pressure in cuff and thus have a limited accuracy. It is promising to build a physical simulator that contains a synthetic arm with a built-in brachial artery and an affiliated hydraulic model of cardiovascular system. To guide the construction of this kind of simulator, this paper presents a computer model of cardiovascular system with a relatively simple structure, where the distribution of pressures and flows in aorta root and brachial artery can be simulated, and the produced waves are accordant with the physical data. This model can be used to provide the parameters and structure that will be needed to build the new simulator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BME-141070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!