Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation.

Biomed Mater Eng

School of Biomedical Engineering, Konkuk University, Choonju, 380-701, Korea Research Institute of Biomedical Engineering, Konkuk University, Choonju, 380-701, Korea.

Published: June 2015

This study aims at the quantification of fine change in parkinsonian rigidity at the wrist during deep brain stimulation (DBS) using a portable measurement system and objective mechanical measures. The rigidity of fourteen limbs was evaluated during DBS surgery. The resistive torque to imposed movement was measured for every setting where a reduction in rigidity was perceived by a neurologist. Quantitative mechanical measures derived from experimental data included viscoelastic properties, work, impulse and mechanical impedance. Most mechanical measures could discriminate the optimal setting from baseline (electrode at stereotactic initial position without electrical stimulation) and the highest significance was achieved by viscous damping constant (p<0.001). Spearman correlation coefficients between mechanical measures and clinical score for multiple settings (averaged for 14 limbs) were 0.51-0.77 and the best correlation was shown for viscosity (ρ=0.77 ± 0.22). The results suggest that intraoperative quantification of rigidity during DBS surgery is possible with the suggested system and measures, which would be helpful for the adjustment of electrode position and stimulation parameters.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-141040DOI Listing

Publication Analysis

Top Keywords

mechanical measures
12
parkinsonian rigidity
8
deep brain
8
brain stimulation
8
quantitative evaluation
4
evaluation parkinsonian
4
rigidity
4
rigidity intra-operative
4
intra-operative deep
4
stimulation study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!