Li-Fraumeni syndrome (LFS) is a rare genetic disease with a highly significant predisposition to multiple early-onset neoplasms. These neoplasms include adrenocortical carcinoma, sarcoma, leukemia and CNS tumors in children and sarcoma, breast cancer and lung cancer in adults. LFS is inherited in an autosomal dominant manner. In most patients germline mutations in the tumor suppressor gene TP53 are found. As the majority of known mutations affect the DNA-binding domain of the p53 protein, there are only a few case reports showing the clinical presentation of mutations outside of this mutational hotspot. Here we present a family with a typical LFS pedigree with patients suffering from early-onset lung cancer, bilateral breast cancer and osteosarcoma. TP53 sequence analysis of the index patient revealed the germline mutation c.1025G > C in a heterozygous state, resulting in an amino acid exchange from arginine to proline (p.Arg342Pro) in the tetramerization domain of p53. Using DNA from an old bedside blood typing test, the same mutation was found in the mother of the index patient, who had died of breast cancer 29 years ago. In conclusion, we provide evidence for the co-segregation of a TP53 tetramerization domain mutation and cancer phenotypes, but also report pre-symptomatic mutation carriers within the family. We review published recommendations for clinical management and surveillance of high-risk members in Li-Fraumeni kindreds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10689-014-9754-z | DOI Listing |
J Struct Biol X
June 2025
Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.
Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .
View Article and Find Full Text PDFBiochem J
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFMatrix Biol
January 2025
Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:
Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.
View Article and Find Full Text PDFChemistry
January 2025
Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany.
Light-responsive hydrogels are highly valued for their dynamic mechanical properties and biocompatibility. In this study, we present a hydrogel system that can either soften or strengthen on green light exposure, or remain unresponsive to light, depending on the addition of adenosyl cobalamin (AdoCbl) and Co. These protein-based hydrogels were formed using genetically encoded SpyTag-SpyCatcher chemistry and included green light-sensitive CarH protein domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!