Objective: To consider how staffing requirements have changed with evolving and increasingly more complex assisted reproduction technology (ART) laboratory practice.

Design: Analysis by four laboratory directors from three different ART programs of the level of complexity and time requirements for contemporary ART laboratory activities to determine adequate staffing levels.

Setting: University-based and private ART programs.

Patient(s): None.

Intervention(s): None.

Main Outcome Measure(s): Human resource requirements for ART procedures.

Result(s): Both complexity and time required for completion of a contemporary ART cycle have increased significantly compared with the same requirements for the "traditional cycle" of the past. The latter required roughly 9 personnel hours, but a contemporary cycle can require up to 20 hours for completion. Consistent with this increase, a quantitative analysis shows that the number of embryologists required for safe and efficient operation of the ART laboratory has also increased. This number depends on not only the volume but also the types of procedures performed: the higher the number of complex procedures, the more personnel required. An interactive Personnel Calculator is introduced that can help determine staffing needs.

Conclusion(s): The increased complexity of the contemporary ART laboratory requires a new look at the allocation of human resources. Our work provides laboratory directors with a practical, individualized tool to determine their staffing requirements with a view to increasing the safety and efficiency of operations. The work could serve as the basis for revision of the 2008 American Society for Reproductive Medicine (ASRM) staffing guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2014.07.1246DOI Listing

Publication Analysis

Top Keywords

art laboratory
16
contemporary art
12
assisted reproduction
8
reproduction technology
8
staffing requirements
8
art
8
laboratory directors
8
complexity time
8
determine staffing
8
laboratory
7

Similar Publications

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).

View Article and Find Full Text PDF

Unified Knowledge-Guided Molecular Graph Encoder with multimodal fusion and multi-task learning.

Neural Netw

December 2024

School of Computer Science, Wuhan University, Luojiashan Road, Wuchang District., Wuhan, 430072, Hubei Province, China; Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, No. 8, Yangqiaohu Avenue, Zanglong Island Development Zone, Jiangxia District, Wuhan, 2007, Hubei Province, China. Electronic address:

The remarkable success of Graph Neural Networks underscores their formidable capacity to assimilate multimodal inputs, markedly enhancing performance across a broad spectrum of domains. In the context of molecular modeling, considerable efforts have been made to enrich molecular representations by integrating data from diverse aspects. Nevertheless, current methodologies frequently compartmentalize geometric and semantic components, resulting in a fragmented approach that impairs the holistic integration of molecular attributes.

View Article and Find Full Text PDF

RAIN: Reconstructed-aware in-context enhancement with graph denoising for session-based recommendation.

Neural Netw

December 2024

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.

Session-based recommendation aims to recommend the next item based on short-term interactions. Traditional session-based recommendation methods assume that all interacted items are closely related to the user's interests. However, noise (e.

View Article and Find Full Text PDF

Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications.

Adv Colloid Interface Sci

December 2024

Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:

Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.

View Article and Find Full Text PDF

Background: Clinical decision-making is increasingly shifting towards data-driven approaches and requires large databases to develop state-of-the-art algorithms for diagnosing, detecting and predicting diseases. The intensive care unit (ICU), a data-rich setting, faces challenges with high-frequency, unstructured monitor data. Here, we showcase a successful example of a data pipeline to efficiently move patient data to the cloud environment for structured storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!