New dinuclear di(N-heterocyclic carbene) silver(I), gold(I) and gold(III) complexes have been synthesised and their antiproliferative effects towards various cancer cell lines have been screened. The di(N-heterocyclic carbene) ligands have a propylene linker between the carbene moieties and the imidazole backbone has been functionalised with a 1-benzyl- or 1-PEG-1,2,3-triazole ring (PEG=poly(ethylene glycol)) via a CuAAC (copper azido alkyne cycloaddition) reaction. The resulting gold(I) and gold(III) complexes display an antiproliferative activity superior to that of the unfunctionalised pristine complexes together with a higher selectivity towards cancerous cells with respect to healthy cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2014.08.013 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA.
Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Birla Institute of Technology Mesra, Ranchi 835215, India.
Planar hexacoordination is an extremely uncommon phenomenon for the atoms that belong to the main group. Within this article, we have analyzed the potential energy surfaces (PES) of ABeCB (A = N, P, As, Sb, and Bi) clusters in neutral, monocationic, monoanionic, dicationic, and dianionic states using density functional theory (DFT). Among which PBeCB, PBeCB, AsBeCB, AsBeCB, SbBeCB, and BiBeCB clusters contain a planar hexacoordinate boron (phB) atom in the global minimum energy structures with symmetry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Max-Planck-Institut fur Kohlenforschung, Organometallic Chemistry, Kaiser-Wilhelm-Platz 1, 45470, Mülheim/Ruhr, GERMANY.
Ynamides, when reacted with H2 or HBpin in the presence of [Cp*RuCl]4, convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.
Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Westlake University, Chemistry, No.18 Shilongshan Road, 310024, Hangzhou, CHINA.
Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!