A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Li storage performance of LiNi(0.5)Mn(1.5)O(4)-coated 0.4Li(2)MnO(3)·0.6LiNi(1/3)Co(1/3)Mn(1/3)O(2) cathode materials for li-ion batteries. | LitMetric

In this study, Li-rich cathode, 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 was synthesized by a resorcinol formaldehyde assisted sol-gel method for the first time. Then, the surface of the as-prepared Li-rich cathode was modified with different amounts of LiNi0.5Mn1.5O4 (5, 10, and 20 wt %) through a simple dip-dry approach. The structural and electrochemical characterizations revealed that the spinel LiNi0.5Mn1.5O4 coating not only can prevent electrolytes from eroding the Li-rich core but also can facilitate fast lithium ion transportation. As a result, the 20 wt % coated sample delivered an initial discharge capacity of 298.6 mAh g(-1) with a Coulombic efficiency of 84.8%, compared to 281.1 mAh g(-1) and 70.2%, respectively, for the bare sample. Particularly, the coated sample demonstrates a Li storage capacity of 170.7 mAh g(-1) and capacity retention of 94.4% after 100 cycles at a high rate of 5 C (1250 mA g(-1)), showing a prospect for practical lithium battery applications. More significantly, the synthetic method proposed in this work is facile and low-cost and possibly could be adopted for large-scale production of surface-modified cathode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am504412nDOI Listing

Publication Analysis

Top Keywords

mah g-1
12
cathode materials
8
li-rich cathode
8
coated sample
8
enhanced storage
4
storage performance
4
performance lini05mn15o4-coated
4
lini05mn15o4-coated 04li2mno3·06lini1/3co1/3mn1/3o2
4
cathode
4
04li2mno3·06lini1/3co1/3mn1/3o2 cathode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!