A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of PLGA based nanoparticles for imaging guided applications. | LitMetric

Design of PLGA based nanoparticles for imaging guided applications.

Mol Pharm

Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy.

Published: November 2014

An amphiphilic Gd(III) complex has been efficiently loaded in polylactic-co-glycolic acid nanoparticles (PLGA-NPs) to yield a novel, high sensitive magnetic resonance imaging (MRI) contrast agent for imaging guided drug delivery applications. As the Gd(III) complex is soluble in organic solvents, the nanoparticles were prepared as oil/water emulsions. PLGA-NPs were stable, in buffer, for more than 1 week without any release of the incorporated agents. The millimolar relaxivity of the Gd(III) complex incorporated in the particles (140 nm diameter) was of 21.7 mM(-1) s(-1) at 21.5 MHz, a value that is about 5 times higher than that observed with the commercially available contrast agents used in clinic. The relaxometric efficiency of these particles resulted inversely proportional to the particle size measured by dynamic light scattering. The high stability and sensitivity of PLGA-NPs allowed their accumulation in vivo in murine melanoma xenograft as shown in the corresponding MR images. Once loaded with drug and contrast agents, PLGA nanoparticles can be proposed as efficient theranostic MRI agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp5002747DOI Listing

Publication Analysis

Top Keywords

gdiii complex
12
imaging guided
8
contrast agents
8
design plga
4
plga based
4
nanoparticles
4
based nanoparticles
4
nanoparticles imaging
4
guided applications
4
applications amphiphilic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!