Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have developed new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state NMR, which enable extraction of the spectrum of a target component from a mixture of several components. These methods are based on the equalization of proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton relaxation time of individual components in the mixture. We recently reported two types of RFS methods using proton spin-lattice relaxation time in the rotating frame ((1)H T1rho) in (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, to increase the availability of RFS methods, we focus on proton spin-lattice relaxation time ((1)H T1). Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility, and led to the development of two new types of RFS methods using (1)H T1. We then demonstrated these methods by selectively exciting the (13)C signals of target components in a commercially available drug and a number of physical mixtures, and we showed them to be applicable to the quantitative analysis of individual components in these solid mixtures with an experimental duration of 1.5 to about 10 h. The practicality and versatility of these four RFS methods were increased by combining two or more of them, or by using a flip-back pulse, which is an effective means of shortening experimental duration. These RFS methods are suitable for use in a broad range of fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac501367j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!