Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6.

J Exp Med

Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan

Published: September 2014

Toxoplasma gondii infection results in co-option and subversion of host cellular signaling pathways. This process involves discharge of T. gondii effector molecules from parasite secretory organelles such as rhoptries and dense granules. We report that the T. gondii polymorphic dense granule protein GRA6 regulates activation of the host transcription factor nuclear factor of activated T cells 4 (NFAT4). GRA6 overexpression robustly and selectively activated NFAT4 via calcium modulating ligand (CAMLG). Infection with wild-type (WT) but not GRA6-deficient parasites induced NFAT4 activation. Moreover, GRA6-deficient parasites failed to exhibit full virulence in local infection, and the treatment of WT mice with an NFAT inhibitor mitigated virulence of WT parasites. Notably, NFAT4-deficient mice displayed prolonged survival, decreased recruitment of CD11b(+) Ly6G(+) cells to the site of infection, and impaired expression of chemokines such as Cxcl2 and Ccl2. In addition, infection with type I parasites culminated in significantly higher NFAT4 activation than type II parasites due to a polymorphism in the C terminus of GRA6. Collectively, our data suggest that GRA6-dependent NFAT4 activation is required for T. gondii manipulation of host immune responses to maximize the parasite virulence in a strain-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172224PMC
http://dx.doi.org/10.1084/jem.20131272DOI Listing

Publication Analysis

Top Keywords

nfat4 activation
16
toxoplasma gondii
8
gondii polymorphic
8
polymorphic dense
8
dense granule
8
granule protein
8
protein gra6
8
gra6-deficient parasites
8
type parasites
8
nfat4
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!