Philos Trans R Soc Lond B Biol Sci
Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic Department of Neuroscience, Institute of Experimental Medicine AS CR, Prague, Czech Republic
Published: October 2014
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173293 | PMC |
http://dx.doi.org/10.1098/rstb.2013.0608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.