Crystallographic structure determination of protein-ligand complexes of transthyretin (TTR) has been hindered by the low affinity of many compounds that bind to the central cavity of the tetramer. Because crystallization trials are carried out at protein and ligand concentration that approach the millimolar range, low affinity is less of a problem than the poor solubility of many compounds that have been shown to inhibit amyloid fibril formation. To achieve complete occupancy in co-crystallization experiments, the minimal requirement is one ligand for each of the two sites within the TTR tetramer. Here we present a new strategy for the co-crystallization of TTR using high molecular weight polyethylene glycol instead of high ionic strength precipitants, with ligands solubilized in multicomponent mixtures of compounds. This strategy is applied to the crystallization of TTR complexes with curcumin and 16α-bromo-estradiol. Here we report the crystal structures with these compounds and with the ferulic acid that results from curcumin degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2014.09.002 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.
View Article and Find Full Text PDFMolecules
December 2024
Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai University", 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania.
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
DDR Research Clinic, Caserta, Italy.
Background: Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria. Electronic address:
This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmacy, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China.
Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!