Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Context: Complex testing protocols are required to fully understand the biomechanics of the spine. There remains limited data concerning the mechanical properties of spinal specimens under dynamic loading conditions in six axes.
Purpose: To provide new data on the mechanical properties of functional spinal unit (FSU) and isolated disc (ISD) spinal specimens in 6 df.
Study Design: Dynamic, six-axis stiffness matrix testing of porcine lumbar spinal specimens.
Methods: The stiffness matrix testing of lumbar porcine FSU (n=6) and ISD (n=6) specimens was completed in a custom six-axis spine simulator using triangle wave cycles at a frequency of 0.1 Hz. Specimens were first tested without an axial preload, then with an axial preload of 500 N, with equilibration times of both 30 and 60 minutes.
Results: The stiffness matrices were not symmetrical about the principal stiffness terms. The facets increased all the principal stiffness terms with the exception of axial compression-extension. Significant differences were detected in 15 stiffness terms because of the application of an axial preload in the ISD specimens, including an increase in all principal stiffness terms. There were limited differences in stiffness because of equilibration time of 30 and 60 minutes.
Conclusions: The assumption of stiffness matrix symmetry used in many previous studies is not valid. The biomechanical testing of spinal specimens should be completed in 6 df, at physiologic loading rates, and incorporate the application of an axial preload. The present study has provided new data on the mechanical properties of spinal specimens and demonstrates that the dynamic stiffness matrix method provides a means to more fully understand the natural spine and quantitatively assess spinal instrumentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2014.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!