Voltage-dependent potassium channels open in response to changes in membrane potential and become partially inactivated upon binding of inhibitors. Here we calculate normal mode motion of two voltage-dependent K(+) channels, KvAP and Shaker, and their complexes with inhibitors and address the gating principle, opening mechanism, and inhibition. The normal modes indicate that pore expansion and channel opening is correlated with a displacement of the arginine gating charges and a tilting of the voltage-sensor paddles. Normal modes of Shaker in complex with agitoxin, which blocks the central pore, do not display significantly altered paddle tilting and pore expansion. In contrast, normal modes of Shaker in complex with hanatoxin, which binds to the voltage sensor paddle, display decreased paddle tilting and pore expansion. This study presents a unified motion for the gating principle and channel opening, and offers insight into the voltage sensor paddle motion and its inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10827-014-0527-3 | DOI Listing |
Alzheimers Res Ther
January 2025
Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
Background: Disease-modifying therapies targeting the diverse pathophysiology of Alzheimer's disease (AD), including neuroinflammation, represent potentially important and novel approaches. The glucagon-like peptide-1 receptor agonist semaglutide is approved for the treatment of type 2 diabetes and obesity and has an established safety profile. Semaglutide may have a disease-modifying, neuroprotective effect in AD through multimodal mechanisms including neuroinflammatory, vascular, and other AD-related processes.
View Article and Find Full Text PDFPain Ther
January 2025
Research Management, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA.
Introduction: There is a high unmet need for safe and effective non-opioid medicines to treat moderate to severe pain without risk of addiction. Voltage-gated sodium channel 1.8 (Na1.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Institute for Global Health, University of Siena, 53100 Siena, Italy.
Background/objectives: A "people-centered" approach is one of the core principles of the Immunization Agenda (IA) 2030 and emphasizes the need for services to be organized around the needs and expectations of individuals and the community. A better understanding of the immunization experience from the client's perspective is key to guiding the design of policies and interventions aimed at improving immunization delivery and coverage. This study provides a synthesis of the immunization experiences of children's caregivers in Cameroon, highlighting potential barriers for timely and complete immunization.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.
View Article and Find Full Text PDFBiologicals
December 2024
NC3Rs, London, United Kingdom.
A recently published report from the UK National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs) has highlighted significant opportunities for the broader inclusion of 3Rs approaches (i.e. Replacement, Reduction and Refinement of animal tests) within World Health Organization (WHO) manuals, guidelines and recommendations for vaccines and biotherapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!