Systemic angiotensin II and exercise-induced neurogenesis in adult rat hippocampus.

Brain Res

Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan.

Published: November 2014

Physical exercise is a robust stimulus that enhances hippocampal neurogenesis via cell proliferation in rodents. We examined the role of systemic angiotensin (Ang) peptides in exercise-dependent enhancement of neurogenesis in the adult rat hippocampus. Plasma angiotensin peptide concentration increased rapidly in response to 30 min of treadmill exercise. After undertaking this exercise once daily for a week, the number of proliferating cells in the hippocampus, identified by 5-bromo-2'-deoxyuridine (BrdU) incorporation, had increased compared with controls. To mimic the increase in plasma Ang peptide concentrations brought about by exercise, rats were injected with 10(-5)M Ang II once daily for a week. The number of BrdU-incorporating cells and of doublecortin (DCX)-expressing immature neurons in the hippocampus rose approximately 1.5 and 1.9-fold compared with controls, respectively. The effects were completely abolished by an Ang II receptor subtype 1 antagonist losartan. These findings, taken together, suggest that an increased concentrations of Ang peptides in the systemic circulation during exercise may promote neurogenesis in the adult rat hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2014.09.019DOI Listing

Publication Analysis

Top Keywords

neurogenesis adult
12
adult rat
12
rat hippocampus
12
systemic angiotensin
8
ang peptides
8
daily week
8
week number
8
compared controls
8
hippocampus
5
exercise
5

Similar Publications

Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.

Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.

View Article and Find Full Text PDF

The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).

View Article and Find Full Text PDF

Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice.

EMBO Rep

January 2025

Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.

Hierarchy provides a survival advantage to social animals in challenging circumstances. In mice, social dominance is associated with trait anxiety which is regulated by adult hippocampal neurogenesis. Here, we test whether adolescent hippocampal neurogenesis may regulate social dominance behavior in adulthood.

View Article and Find Full Text PDF

Background: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested.

Methods: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!