A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Autofluorescence imaging of macular pigment: influence and correction of ocular media opacities. | LitMetric

Autofluorescence imaging of macular pigment: influence and correction of ocular media opacities.

J Biomed Opt

University of Utah, Department of Physics and Astronomy, Salt Lake City, Utah 84112, United States.

Published: September 2014

The healthy adult human retina contains in its macular region a high concentration of blue-light absorbing carotenoid compounds, known as macular pigment (MP). Consisting of the carotenoids lutein, zeaxanthin, and meso-zeaxanthin, the MP is thought to shield the vulnerable tissue layers in the retina from lightinduced damage through its function as an optical attenuator and to protect the tissue cells within its immediate vicinity through its function as a potent antioxidant. Autofluorescence imaging (AFI) is emerging as a viable optical method for MP screening of large subject populations, for tracking of MP changes over time, and for monitoring MP uptake in response to dietary supplementation. To investigate the influence of ocular media opacities on AFI-based MP measurements, in particular, the influence of lens cataracts, we conducted a clinical trial with a large subject population (93 subjects) measured before and after cataract surgery. General AFI image contrast, retinal blood vessel contrast, and presurgery lens opacity scores [Lens Opacities Classification System III (LOCS III)] were investigated as potential predictors for image degradation. These clinical results show that lens cataracts can severely degrade the achievable pixel contrasts in the AFI images, which results in nominal MP optical density levels that are artifactually reduced. While LOCS III scores and blood vessel contrast are found to be only a weak predictor for this effect, a strong correlation exists between the reduction factor and the image contrast, which can be quantified via pixel intensity histogram parameters. Choosing the base width of the histogram, the presence or absence of ocular media opacities can be determined and, if needed, the nominal MP levels can be corrected with factors depending on the strength of the opacity.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.JBO.19.9.096010DOI Listing

Publication Analysis

Top Keywords

ocular media
12
media opacities
12
autofluorescence imaging
8
macular pigment
8
large subject
8
lens cataracts
8
image contrast
8
blood vessel
8
vessel contrast
8
imaging macular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!