Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.12242DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
24
basal forebrain
20
bdnf1 bdnf4
12
bdnf
10
sleep
9
sleep-wake cycle
8
bdnf4 bdnf9a
8
dna methylation
8
bdnf expression
8
forebrain cortex
8

Similar Publications

Sleepiness-related errors are a leading cause of driving accidents, requiring drivers to effectively monitor sleepiness levels. However, there are inter-individual differences in driving performance after sleep loss, with some showing poor driving performance while others show minimal impairment. This research explored if there are differences in self-reported sleepiness and driving performance in healthy drivers who exhibited vulnerability or resistance to objective driving impairment following extended wakefulness.

View Article and Find Full Text PDF

The relationship between fatigue, sleep quality, and sleep deprivation.

Sleep Breath

January 2025

Faculty of Medicine, Institute of Health Sciences, Department of Public Health, University of Hacettepe, Ankara, Türkiye.

Background: Fatigue, sleep disorders, and daytime sleepiness are interconnected, posing significant risks to occupational health and workplace safety. However, the literature on their relationships remains fragmented, with notable gaps, particularly concerning working populations. This descriptive cross-sectional study aimed to evaluate sleep quality (SQ), daily sleep time in hours (DST), daytime sleepiness, fatigue levels among employees in an automotive workplace, and their interrelationships.

View Article and Find Full Text PDF

Sensitivity of driving simulation to sleep deprivation: effect of task duration.

Sleep

January 2025

1Normandie Univ, UNICAEN, COMETE, GIP CYCERON, Caen, France.

Study Objectives: The Psychomotor Vigilance Task (PVT) is widely recognized as the gold standard for measuring vigilance, providing a rapid and objective measure of this state. While driving simulations are also used, they typically require longer administration times. This study examines the sensitivity of driving simulation variables to sleep deprivation throughout the task.

View Article and Find Full Text PDF

To examine whether the effects of low sleep quality, sleep deprivation, and chronotype on daytime cognitive function varied by age group. All data were collected online. We obtained the data from 366 employed people in their 20s, 40s, or 60s.

View Article and Find Full Text PDF

Structural and functional changes in the hippocampus induced by environmental exposures.

Neurosciences (Riyadh)

January 2025

From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.

The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!