Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found. Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-014-2389-5DOI Listing

Publication Analysis

Top Keywords

wild emmer
24
stripe rust
20
rust resistance
16
discovery mapping
12
linkage disequilibrium
8
triticum turgidum
8
turgidum ssp
8
ssp dicoccoides
8
population israel
8
emmer population
8

Similar Publications

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat.

Plant Cell Rep

October 2024

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Article Synopsis
  • Researchers explored the role of m6A-related genes in wild emmer wheat, identifying 64 candidates responsible for RNA modification, including writers, erasers, and readers.
  • The study revealed that gene duplication and polyploidization significantly contributed to the expansion of these genes, with promoter analysis showing links to stress and hormonal response elements.
  • A specific focus on the gene TdFIP37 highlighted its crucial role in regulating salt tolerance, with loss-function mutants demonstrating increased sensitivity to salt stress, linking it to the MAPK signaling pathway.
View Article and Find Full Text PDF

Overexpression of TdNACB improves the drought resistance of rice.

Plant Physiol Biochem

November 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Article Synopsis
  • * A wild emmer introgression line, BAd7-209, showed greater drought resistance than the drought-resistant wheat variety Zhongmai 175, with transcriptome analysis revealing significant gene expression changes in response to drought.
  • * The study identified TdNACB as a key transcription factor that enhances drought resistance in crops like rice by increasing proline content and boosting enzyme activity related to reactive oxygen species scavenging, providing potential candidate genes for improving wheat drought resistance.
View Article and Find Full Text PDF

The emergence of the Linear Pottery Culture (LBK) during the Neolithic period within Polish territory 5400-4900 BC, introduced plant cultivation, yet the definitive list of cultivated species remains debated. This study examines plant assemblages (fruits, seeds, pollen, and spores) from the LBK settlement in Biskupice, southern Poland, aiming to identify cultivated and wild species used during the development of the first stable settlements in the Carpathian Foothills. Due to extensive sampling, Biskupice yielded over 11,000 macroscopic plant specimens, enabling detailed analysis of plant diversity, distribution, and implications for agrarian and dietary practices.

View Article and Find Full Text PDF

As important secondary metabolites in plants, anthocyanins not only contribute to colored plants organs, but also provide protections against various biotic and abiotic stresses. In this study, a MYB transcription factor gene TdRCA1 from wild emmer wheat regulating anthocyanin biosynthesis in wheat coleoptile was identified on the short arm of chromosome 7A in common wheat genetic background. The TdRCA1 overexpression lines showed colored callus, coleoptile, auricle and stem nodes, as well as up regulation of six anthocyanin-related structural genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!